Forced oscillations of nonlinear damped equation of suspended string
نویسندگان
چکیده
منابع مشابه
Forced Oscillations of a Damped Korteweg-de Vries Equation in a Quarter Plane
Laboratory experiments have shown that when nonlinear, dispersive waves are forced periodically from one end of an undisturbed stretch of the medium of propagation, the signal eventually becomes temporally periodic at each spatial point. It is our purpose here to establish this as a fact at least in the context of a damped Korteweg-de Vries equation. Thus, consideration is given to the initial-...
متن کاملForced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کاملA New Simultaneous Identification of the Harmonic Excitations and Nonlinear Damping of Forced Damped Nonlinear Oscillations: A Parametric Approach
This paper presents a novel, general method that is aimed at identifying both the harmonic excitations and nonlinear damping of forced nonlinear oscillation systems. An inverse formalism is developed for the identification method, which is shown to be well posed.That is, the inverse formalism has a unique solution and it depends continuously on the data.The unique solution is derived in the clo...
متن کاملUniform stability of damped nonlinear vibrations of an elastic string
Abstract. Here we are concerned about uniform stability of damped nonlinear transverse vibrations of an elastic string fixed at its two ends. The vibrations governed by nonlinear integro-differential equation of Kirchoff type, is shown to possess energy uniformly bounded by exponentially decaying function of time. The result is achieved by considering an energy-like Lyapunov functional for the ...
متن کاملForced nonlinear Schrödinger equation with arbitrary nonlinearity.
We consider the nonlinear Schrödinger equation (NLSE) in 1+1 dimension with scalar-scalar self-interaction g(2)/κ+1(ψ*ψ)(κ+1) in the presence of the external forcing terms of the form re(-i(kx+θ))-δψ. We find new exact solutions for this problem and show that the solitary wave momentum is conserved in a moving frame where v(k)=2k. These new exact solutions reduce to the constant phase solutions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2008
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2007.11.051